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NON EQUILIBRIUM THERMODYNAMICS WITH INTERNAL
VARIABLES IN KLUITENBERG’S THEORY

VINCENZO CIANCIO

ABSTRACT. We show a method to verify experimentally some inequalities which oc-
cur for phenomenological coefficients in the thermodynamical model for dielectric relax-
ation and viscoanelastic media developed in the ambit of non-equilibrium thermodynamic
Kluitenberg’s theory. In particular, for dielectric relaxation we assume a sinusoidal form
for induction vector (extensive variable: cause), the electric field (intensive variable: ef-
fect) inside the system, which depends on unknown phenomenological coefficients, has
been obtained by integration. Then we compare it with a similar form of the electric field
obtained by experimental considerations, where well known experimentally determinable
coefficients appear. We carry out dielectric measurements on PMMA and PVC at different
frequencies and fixed temperature in order to obtain the phenomenological coefficients as
functions of the frequency. For viscoanelastic media we consider the relative rheological
equation and we compare the solution of this equation with a well known expression of the
stress obtained, by experimentally considerations, in the linear response theory. This com-
parison will be able to determine the phenomenological an state coefficients as function of
frequency dependent quantities experimentally measurable. This method will be applied
to polymeric materials as Polyisobutilene.

1. Introduction.

The Gerrit Alfred Kluitenberg (1925-1994) scientific activity has been mainly devoted
to the study of fundamental problems of irreversible thermodynamics processes. In the first
period of his studies, under the leader-ship of S.R. De Groot, he carried out researchers on
relativistic non-equilibrium thermodynamics obtaining very important results in a contin-
uous mixture consisting of an arbitrary number of chemical components and in the macro-
scopic electromagnetic field in ponderable matter.
After that he conceived a new model studying, by a non-relativistic viewpoint, dielectric
and magnetic relaxation phenomena in polarizable and magnetizable media. Recently the
rheological and phenomenological equations, obtained by G.A. Kluitenberg and his part-
ners in this model, have been experimentally tested confirming the goodness of the model.
The author of this paper, being the first Gerrit Alfred Kluitenberg student, is very hon-
oured for his invitation by Scientific Thermocon 2005 Committee to mention the scientific
contribution of his instructor and he is very grateful to the destiny that has given to him
the possibility to enjoy the affection and the leader-ship of a great scientist: Gerrit Alfred
Kluitenberg.
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2 V. CIANCIO

2. Relativistic thermodynamics of irreversible processes.

In [1]-[6] a relativistic thermodynamic theory of irreversible processes in a continuous
mixture consisting of an arbitrary number of chemical components was developed. The
energy-momentum tensor of the macroscopic electromagnetic field in ponderable matter
was investigate.
First, some useful notions such as densities, concentrations and flows of matter, the barycen-
tric velocity and the barycentric Lorentz frame are introduced, from the relativistic micro-
scopic fundamental laws the entropy balance is derived.
The phenomenological equations for isotropic media are given and it is shown that the
Onsager relations are Lorentz invariant.
The Onsager relations are discussed also in media without and with polarization and mag-
netization effects and the phenomenological equations for isotropic and anisotropic media
are given in four-dimensional and three-dimensional tensor form.

3. Thermodynamic theory for viscoanelastic media.

In [7]-[14] a thermodynamic theory for mechanical relaxation phenomena in continuous
media was developed by using the general methods of non-equilibrium thermodynamics. It
was assumed that several microscopic phenomena occur which give rise to inelastic strain
and that the total inelastic deformation is additively composed of contributions of these
phenomena.
If both elastic and inelastic deformations occur, it was shown that

(1) εαβ = ε
(el)
αβ + ε

(in)
αβ

where εαβ is the tensor of the total strain and ε(el)αβ and ε(in)
αβ are tensors describing the

elastic and inelastic strains, respectively.
In contradistinction to the elastic strains, the inelastic deformations are due to lattice de-
fects and related phenomena (slip, dislocation, etc.).
If n different types of microscopic phenomena give rise to inelastic strain we have

(2) ε
(in)
αβ =

n∑
k=1

ε
(k)
αβ

where ε(k)αβ is the contribution to the inelastic strain of the k-th microscopic phenomenon.
Since the n microscopic phenomena are assumed to be different, the specific entropy s
is supposed depending on the specific internal energy u, on the total strain and on all the
tensors ε(k)αβ and so we have:

(3) s = s(u, εαβ , ε
(1)
αβ , . . . , ε

(n)
αβ )

Moreover, defining the temperature T by

(4) T−1 =
∂s

∂u
;



NON EQUILIBRIUM THERMODYNAMICS WITH ... 3

the equilibrium-stress tensor, τ (eq)
αβ , by

(5) τ
(eq)
αβ = −ρT ∂s

∂εαβ
;

(where % is the mass density) and the affinity-stress tensors conjugate to ε(k)αβ by

(6) τ
(k)
αβ = ρT

∂s

∂ε
(k)
αβ

from the first law of thermodynamics it was obtained the following balance equation for
the entropy

(7) %
ds

dt
= − div

(
J(q)

T

)
+ σ(s)

where

(8) σ(s) = T−1

[
− T−1J(q) · gradT + τ

(vi)
ik

dεik
dt

+
n∑
k=1

τ
(k)
ik

dε
(k)
ik

dt

]

is the entropy production.
In (7) and (8) J(q) is the heat flow and

(9) τ
(vi)
ik = τik − τ

(eq)
ik

the viscous stress tensor. Moreover, in (9), τik is the mechanical stress tensor which occur
in the first law of thermodynamics.
According to the usual procedure of non-equilibrium thermodynamics it can be obtained
the linear rheological equations for isotropic visco-anelastic media, which for n = 1 have
the following expressions:

R
(τ)
(d)0τ̃ik +

d

dt
τ̃ik = R

(ε)
(d)0ε̃ik +R

(ε)
(d)1

d

dt
ε̃ik +

+R(ε)
(d)2

d2

dt2
ε̃ik ,(10)

R
(τ)
(v)0(τ − τ0) +

d

dt
τ = R

(ε)
(v)0ε+R

(ε)
(v)1

d

dt
ε+

+R(ε)
(v)2

d2

dt2
ε .(11)

In (10)-(11) τ̃ik and ε̃ik are the deviators of the tensors ταβ and εαβ , respectively, while τ
and ε are their scalar parts (τ0 is the scalar part of the stress of the medium in a state of
thermodynamic equilibrium ).
Moreover one has [10]:
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R
(τ)
(d)0 = a(1,1)η(1,1)

s ;(12)

R
(ε)
(d)0 = a(0,0)(a(1,1) − a(0,0))η(1,1)

s ;(13)

R
(ε)
(d)1 = a(0,0)(1 + 2η(0,1)

s ) +(14)

+a(1,1)[η(0,0)
s η(1,1)

s + (η(0,1)
s )2];(15)

R
(ε)
(d)2 = η(0,0)

s ;(16)

R
(τ)
(v)0 = b(1,1)η(1,1)

v ;(17)

R
(ε)
(v)0 = b(0,0)(b(1,1) − b(0,0))η(1,1)

v ;(18)

R
(ε)
(v)1 = b(0,0)(1 + 2η(0,1)

v ) +(19)

+b(1,1)[η(0,0)
v η(1,1)

v + (η(0,1)
v )2];(20)

R
(ε)
(v)2 = η(0,0)

v .(21)

In (12)-(16) the quantities a(0,0), b(0,0), a(1,1), b(1,1) are scalar constants (coefficients of
state). The coefficients η(0,0)

s and η(0,0)
v may be called the shear and the volume viscosity,

respectively, and η
(1,1)
s and η

(1,1)
v are fluidities and η

(0,1)
s and η

(0,1)
v are dimensionless

coefficients connected with possible cross effect among viscous and anelastic flows.

4. Experimental approach of linear response theory for phenomenological coeffi-
cients of Kluitenberg’s thermodynamic theory for visco-anelastic media

For shear phenomena, if cross-effect between viscous and inelastic flows can be ne-
glected, the (12)-(16) reduce to:

R
(τ)
(d)0 = a(1,1)η(1,1)

s ;(22)

R
(ε)
(d)0 = a(0,0)(a(1,1) − a(0,0))η(1,1)

s ;(23)

R
(ε)
(d)1 = a(0,0) + a(1,1)η(1,1)

s η(0,0)
s ;(24)

R
(ε)
(d)2 = η(0,0)

s .(25)

Dimensionally one has

(26)

[
R

(τ)
(d)0

]
= t−1

[
a(0,0)

]
= ml−1t−2

[
R

(ε)
(d)0

]
= ml−1t−3

[
a(1,1)

]
= ml−1t−2

[
R

(ε)
(d)1

]
= ml−1t−2

[
η
(1,1)
s

]
=
(
ml−1t−1

)−1

[
R

(ε)
(d)2

]
= ml−1t−1

[
η
(0,0)
s

]
= ml−1t−1
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It was shown [10] that from the principle of entropy production, the following inequalities
hold :

(27)

a(0,0) > 0
a(1,1) > 0
η
(1,1)
s > 0
η
(0,0)
s > 0

Very recently, in [16], at the sake to verify experimentally the inequalities (27), using the
approach of linear response theory [17], [19], it was shown as the phenomenological and
state coefficients can be related to quantities that can be experimentally measurable.
Let a generic continuum medium be subject to three-dimensional harmonic shear deforma-
tion (extensive variable=cause) of the form [18]:

(28) ε̃αβ = ε̃
(0)
αβ sinωt

where ε̃(0)αβ = constant and ω = 2πν are, respectively, the amplitude and the angular
frequency of the deformation.

Of course the medium will react by a stress [17] (intensive variable = effect) of the
same frequency as the deformation but of different amplitude τ̃0

αβ and with a phase lag
ϕαβ . These will be functions of the frequency of deformation because they result from the
time necessary for molecular rearrangement and from dissipative phenomena; so we have
τ̃

(0)
αβ = τ̃

(0)
αβ (ω) and ϕαβ = ϕαβ (ω) [17].

The form of this stress will be (here we don’t use Einstein’s convention):

(29) τ̃αβ = τ̃
(0)
αβ (ω) sin [ωt+ ϕαβ (ω)]

or

(30) τ̃αβ = G
(1)
αβ ε̃

(0)
αβ sin (ωt) +G

(2)
αβ ε̃

(0)
αβ cos (ωt)

where

(31) G
(1)
αβ(ω) =

τ̃
(0)
αβ

ε̃
(0)
αβ

cosϕαβ (ω) ,

(32) G
(2)
αβ(ω) =

τ̃
(0)
αβ

ε̃
(0)
αβ

sinϕαβ (ω)

The quantities G(1)
αβ(ω) and G(2)

αβ(ω), experimentally measured, are called storage and loss
moduli and are related to non dissipative phenomena and to dissipative ones [19].
If we consider the case for which just one component of the strain and stress is different
from zero, for example ε̃(0)12 and τ̃ (0)

12 , the equations (10), (29)-(32) become, respectively:

(33)
dτ

dt
+R

(τ)
(d)0τ = R

(ε)
(d)0ε+R

(ε)
(d)1

dε

dt
+R

(ε)
(d)2

d2ε

dt2
,

(34) τ(ω) = G1(ω)ε0 sin (ωt) +G2(ω)ε0 cos (ωt) ,
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(35) G1 (ω) =
τ0 (ω)
ε0

cosϕ (ω) ,

(36) G2 (ω) =
τ0 (ω)
ε0

sinϕ (ω) .

where τ̃12(ω) = τ(ω), τ̃ (0)
12 (ω) = τ0(ω), ε̃12(ω) = ε(ω), ε̃(0)12 = ε0, ϕ12(ω) = ϕ(ω),

G
(1)
12 (ω) = G1(ω), G(2)

12 (ω) = G2(ω).
Assuming that the medium is subjected to one-dimensional harmonic shear deformation of
the form:

(37) ε = ε0 sinωt

and substituting this expression into (33) it follows:

(38)
dτ

dt
+
τ

σ
= α sinωt+ β cosωt

where
α =

(
R

(ε)
0 − ω2R

(ε)
2

)
ε0

β = R
(ε)
1 ε0ω

σ = 1

R
(ε)
0

the solution of (38) is :

(39) τ (t) = τ0 (ω) sin [ωt+ δ (ω)]

where

τ0 (ω) =

√
(α2 + β2)σ2

1 + ω2τ2
cos δ (ω) =

α+ βωσ√
(1 + ω2σ2) (α2 + β2)

sin δ (ω) =
β − αωσ√

(1 + ω2σ2) (α2 + β2)
By equating of (39) with(34) one has:

(40)



a(0,0) (ω) =
G1(1+ω2σ2)−G1R/H

ω2σ2

a(1,1) (ω) = 1
ω2σ2

{
[G1(1+ω2σ2)−G1R/H ]2

(G1−G1R/H)(1+ω2σ2)

}

η
(1,1)
s (ω) = ω2σ

{
(G1−G1R/H)(1+ω2σ2)
[G1(1+ω2σ2)−G1R/H ]2

}
η
(0,0)
s (ω) = G1R/H+G2ωσ−G1

ω2σ

In (40)

G1R/H =
a(0,0)

(
a(1,1) − a(0,0)

)
a(1,1)

where we select the values G1R or G1H for the symbol G1R/H depending on we refer to
low or high frequency, respectively.
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In this way we have obtained the variables a(0,0), a(1,1), η
(0,0)
s , η

(1,1)
s , for low and high fre-

quency, as function of the frequency-dependent quantitiesG1 eG2 which are experimental
determinable.
The coefficients (40) are plotted in Fig.1 for Poly-isobutylene material.

Figure 1. Poly-isoButylene; M.w. = 106 g/mol. , T0 =
273K;G1R ≈ 105.4Pa;G1H ≈ 109.38Pa;σ ≈ 10−5s.

5. Dielectric relaxation phenomena.

In [20] and [21] a thermodynamic theory for dielectric relaxation phenomena was pro-
posed and it was shown that if there is a hidden vectorial internal variable, which influences
the polarization P, this leads to the possibility to write P in the form

(41) P = P(0) + P(1)

where P(1) can be considered as internal variable, while in the linear approximation of the
theory P(0) is proportional to the electric field E. This means that P is additively com-
posed of a reversible (elastic) part P(0) and an irreversible part P(1) which is connected
with dielectric after-effects.
Moreover, in the linear approximation [xxxx] one can eliminate the internal variable from
the formalism and this leads to the Debye [26] equation

(42) χ
(0)
(EP )E +

dE
dt

= χ
(0)
(PE)P + χ

(1)
(PE)

dP
dt
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In (42) the quantities χ are phenomenological coefficients which are connected to the phys-
ical properties of the medium.
In the theory it was shown that if an instantaneous change in the electric field E occurs
this is associated with a sudden change in the polarization. This is connected with the
reversible character of P(0).
In [27] it was noted that in principle an instantaneous increase or decrease in the polar-
ization is connected with the motion of any kind of microscopic particles, that cannot be
infinitely fast. For this reason in [28]-[32] it was proposed a generalization of the theory
developed in [20] and [21] assuming that, in principle all changes in the polarization are
irreversible phenomena.
Using the methods of irreversible thermodynamic the following phenomenological equa-
tion was obtained:

(43) χ
(0)
(EP )E +

dE
dt

= χ
(0)
(PE)P + χ

(1)
(PE)

dP
dt

+ χ
(2)
(PE)

d2P
dt2

where, from the positive character of the entropy production, the coefficients χmust satisfy
to the following inequalities

(44) χ
(0)
(EP ) ≥ 0 , χ(0)

(PE) ≥ 0 , χ(2)
(PE) ≥ 0 ,

(45) χ
(1)
(PE) − χ

(0)
(EP ) χ

(2)
(PE) ≥ 0 ,

(46) χ
(1)
(PE) ≥ 0 ,

(47) χ
(1)
(PE) χ

(0)
(EP ) − χ

(0)
(PE) ≥ 0 ,

It is seen form 43 that in this generalized model the relaxation dielectric phenomena are
characterized of two relaxation times, as it was emphasized in [33] and [34] from experi-
mental observations.

6. Experimental behavior of phenomenological coefficients in dielectric relaxation
phenomena.

Very recently [35] it was shown that, using the linear response theory [17], a method
to measure experimentally the phenomenological coefficients which occur in (43) and to
verify the inequalities (44)-(47).

Schematically a linear response experiment is represented as in Fig.2.
It consists in the application of a perturbation f(t) to a system S and in the analysis of

the output g(t) from the system.
In the linear response theory the relation between g(t) and f(t) is represented by the

convolution

(48) g(t) = f(t)
⊗

h(t)

where h(t) is the unknown quantity of the problem.
An important result of this theory is that to harmonic input f(t) = Aeiωt it always

corresponds harmonic output of the same frequency but different phase and amplitude

(49) g(t) = B(ω)ei[ωt+φ(ω)]
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Figure 2. Schematic response experiment.

Now, we consider a generic dielectric medium placed between the plain plates of a
capacitor to which a sinusoidal voltage is applied. Consequently we have on the plates a
sinusoidal surface charge, the density of which is characterized by the normal component
of induction vector D = d · n (n is the unit normal to the plates) generating a sinusoidal
electric field inside capacitor.

The linear response theory predict that if D (cause) evolves sinusoidally, i.e.

(50) D = D0sin(ωt)

then the normal component (E = E · n) of electric field inside the capacitor is also sinu-
soidal and characterized by the same frequency but different phase and amplitude

(51) E = E0(ω)sin[ωt+ φ(ω)]

and so

(52) E = D0s1sin(ωt) +D0s2cos(ωt)

where

s1 =
E0(ω)
D0

cos φ(ω) ,(53)

s2 =
E0(ω)
D0

sin φ(ω) .(54)

Defining the reciprocal complex dielectric constant :

(55) s∗ =
E∗

D∗
= s1 + i s2 ,

with

E∗ = E0 e
i(ωt+φ(ω)) ,(56)

D∗ = D0 e
iωt .(57)



10 V. CIANCIO

the complex dielectric constant will be:

(58) ε∗ =
1
s∗

= ε′ − i ε′′ ,

where

(59) ε′ =
s1

s21 + s22
, ε′′ =

s2
s21 + s22

,

Taking into account (53) and (54)

(60) ε′ =
D0

E0(ω)
cosφ(ω) ε′′ =

D0

E0(ω)
sinφ(ω) ,

Dimensionally we have:

(61) [ε′] = [ε′′] =
Q2

ml3 t−2

in the MKSA system (Q= charge, m= mass, l = length, t= time). The quantities (60) are
experimentally measurable and can be proved to be proportional to stored and dissipated
energy, respectively.

7. Phenomenological coefficients and frequency.

The polarization vector is defined by:

(62) P = D − ε0 E

By using the normal component P = P · n and setting:

(63) hi = χ
(i)
(PE) (i = 0, 1, 2) , k0 = χ

(0)
(EP )

from (43) we have:

(64) h2ε0Ë + (1 + h1ε0)Ė + (h0ε0 + k0)E = h2D̈ + h1Ḋ + h0D .

where the dot means derivative respect to time.
We observe that, dimensionally, one has:

[k0] = t−1 , [h0] =
ml3 t−3

Q2
(65)

[h1] =
1
ε0

=
ml3 t−2

Q2
, [h2] =

ml3 t−1

Q2
(66)
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Using (64) and (52) we obtain:

k0 =
ω(εR − ε0)(ε′2 + ε′′2 − ε′ε0)

εRωτ
[
(ε′ − ε0)2 + ε′′2

]
− (εR − ε0)ε′′ε0

,(67)

h0 =
ω(ε′2 + ε′′2 − ε′ε0)

εRωτ
[
(ε′ − ε0)2 + ε′′2

]
− (εR − ε0)ε′′ε0

,(68)

h1 =
(εR − ε0)ε′′ + εRωτ(ε′ − ε0)

εRωτ
[
(ε′ − ε0)2 + ε′′2

]
− ε0ε′′(εR − ε0)

,(69)

h2 =
h0

ω2

[ (ε′ − εR)(ε′ − ε0) + ε′′2

(ε′ − ε0)2 + ε′′2

]
+

ε′′

ω
[
(ε′ − ε0)2 + ε′′2

] .(70)

where

(71) εR =
h0ε0 + k0

h0

It is well known that the following inequalities hold:

ε′ − ε0 > 0 ,(72)
εR − ε0 > 0 ,(73)
εR − ε′ > 0 ,(74)

and from (67)-(69) and (44)-(47)one obtains

k0 > 0 ,(75)
h0 > 0 ,(76)
h1 > 0 ,(77)

(78) if εRωτ
[
(ε′ − ε0)2 + ε′′

]
− (εR − ε0)ε′′ε0 > 0 .

Using (75)-(78) from (70) it follows:

(79) h2 > 0 ,

if

(ε′ − ε0)
[
ε′(ε′ − ε0)(ε′ − εR) + ε′′2(2ε′ − εR)

]
+ ε′′4 +(80)

+ ε′′εRωτ
[
(ε′ − ε0)2 + ε′′2

]
− ε′′2ε0(εR − ε0) > 0 .

We can conclude that the inequalities (78) and (80) define the class of dielectric media
which are described in the theory developed in [20] - [30].

Moreover from (70) it is easy to see that h2 approaches zero for sufficiently large ω,
whereas h0, k0 and h1 approach a positive finite value.

This means that for sufficiently high frequency, in the equation (43), the term connected
with the second derivative vanishes and the phenomenological equation reduces to the
Debye equation.
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8. Experimental date.

We have applied this method to PMMA (PolyMethylMethaCrylate) and PVC (Poly-
VinylChloride) polymers in order to obtain phenomenological coefficients for such mate-
rials.
Then dielectric measurements were performed by Rheometric Scientific Analyzer (DETA)

Figure 3. The trend of the phenomenological
coefficients h0, h1, k0 and h2 for PolyMethyl-
MethaCrylate (PMMA)in the range 10− 105 Hz.

Figure 4. The trend of the phenomenological co-
efficients h0, h1, k0 and h2 for PolyVinylChloride
(PVC) in the range 102 − 106 Hz .
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The analysis chamber is purged with nitrogen and spanned frequencies in the range 10
Hz - 105 for PMMA and 102 Hz - 106 Hz for PVC.
The experimental results are shown in the figures (3) and (4) and are physically meaningful.
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